

2. PROPIEDADES MECÁNICAS

2.1 Bulones, tornillos y esparragos.	
2.1.1 Nomenclatura de las clases de calidad	
2.1.2 Características mecánicas de los bulones, tornillos y espárragos	
2.1.3 Marcado de los bulones, tornillos y espárragos	
2.2 Tuercas DIN, paso grueso y paso fino.	
2.2 Tuereus Birry puso grueso y puso inio.	
2.2.1 Nomenclatura de las clases de calidad	
2.2.2 Características mecánicas de las tuercas	206
2.2.3 Marcado de las tuercas	386
2.3. Tuercas ISO, paso grueso.	
2.3.1 Nomenclatura de las clases de calidad	
2.3.2 Características mecánicas de las tuercas 387	
2.3.3 Marcado de las tuercas	388
2.4. Tuercas ISO, paso fino.	
2.1. Tueleus 150, puso 11110.	
2.4.1 Nomenclatura de las clases de calidad	
2.4.2 Características mecánicas de las tuercas	200
2.4.3 Marcado de las tuercas	390
2.5. Tuercas, especificaciones de calidad según dureza.	
2.5.1 Nomenclatura de las clases de calidad	
2.5.2 Características mecánicas de las tuercas 390	
2.5.3 Marcado de las tuercas	390
2.6. Tuercas remachables.	
2.6.1 Características mecánicas de las tuercas remachables	
2.0.1 Caracteristicas inecarneas de las tuercas remacriables	
2.7 Poloción entre la duraza y la recistencia a la tracción de los acores	
2.7. Relación entre la dureza y la resistencia a la tracción de los aceros.	
2.7.1 Tablas de durezas correspondientes	
2.8. Pares de apriete.	
2.8.1 Tablas de pares de apriete	. 393
2.8.2 Coeficientes de fricción	. 395
2.9. Dimensionado de uniones atornilladas.	
2.57 5 intensionado de amones atorimadas.	
2.9.1 Estimación de los diámetros de los tornillos	
2.9.2 Longitud de roscado útil para agujeros ciegos	200
2.9.3 Presión superficial máxima	398
10 / Madidas paga pasiayay la tuayea da appiata ap las uniapas atayailladas	

2.1 BULONES, TORNILLOS Y ESPÁRRAGOS

NORMA

DIN ISO: 898 Parte 1 ISO: 898 Parte 1 NF: E 25 - 100

Propiedades mecánicas de bulones, tornillos y espárragos en acero.

Las siguientes clases de calidad y sus características mecánicas, se aplican a los bulones, tornillos y espárragos con rosca métrica ISO, de diámetro nominal d \leq 39mm., construidos en acero al carbono y ensayados a temperatura ambiente. Éstas no se aplican a los tornillos sin cabeza y similares, ni con requisitos especiales como: la soldabilidad, la resistencia a la corrosión (ver DIN-267 Parte II y ISO-3506), la resistencia a temperaturas superiores a +300°C o inferiores a -50°C (ver DIN-267 Parte 13). Este sistema de designación de calidades puede ser utilizado para los diámetros d > 39mm. dando por hecho que, todas las exigencias mecánicas prescritas por las clases de calidad, serán debidamente respetadas.

2.1.1 Nomenclatura de las clases de calidad.

Los símbolos de las clases de calidad consisten en dos cifras separadas por un punto; ejemplo: 10.9; con las cuales se indican las características mecánicas más importantes.

La primera cifra indica, en N/mm^2 , un 1/100 de la resistencia nominal a la tracción, ver Rm en la tabla. Para la clase de calidad 10.9, la resistencia a la tracción es: $10 \times 100 = 1000 \, N/mm^2$.

La segunda cifra indica, por 10, la relación entre el limite inferior de fluencia Rel (o límite convencional de elasticidad $R_{p0,2}$) y la resistencia nominal a la tracción Rm; entoces, para una clase de calidad 10.9, la segunda cifra 9 = 10 x 900/1000.

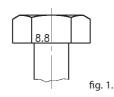
Y por último, la multiplicación de ambas cifras entre si, nos da 1/10 del límite elástico en N/mm², siguiendo el ejemplo: $10 \times 9 = 1/10 \times 900$ N/mm².

2.1.2 Características mecánicas de los bulones, tornillos y espárragos

Características						Clases de	calidad					
mecánicas		3.6	4.6	4.8	5.6	5.8	6.8		d>16 mm. ²⁾	9.8 ³⁾	10.9	12.9
Resistencia a la tracción R _m ⁴⁾ N/mm²	nom. mín.	300 330	400 400	400 420	500 500	500 520	600 600	800 800	800 830	900 900	1000 1040	1200 1220
Dureza Vickers HV F ≥ 98N	mín. máx.	95 250	120 250	130 250	155 250	160 250	190 250	250 320	255 335	290 360	320 380	385 435
Dureza Brinell HB F = 30 D ²	mín. máx.	90 238	114 238	124 238	147 238	152 238	181 238	238 304	242 318	276 342	304 361	366 414
Dureza mín. Rockwell	HRB HRC	52 -	67 -	71 -	79 -	82	89	- 22	23	- 28	32	- 39
HR máx.	HRB HRC	99,5 -	99,5	99,5 -	99,5	99,5	99,5 -	- 32	- 34	- 37	- 39	- 44
Dureza superf. HV 0,3	máx.	-	-	-	-	-	-	5)	5)	5)	5)	5)
Límite inferior de fluencia R _{el} ⁶⁾ N/mm²	nom. mín.	180 190	240 240	320 340	300 300	400 420	480 480	-	-	-	-	-
Límite convencional de elasticidad Rp 0,2 N/mm²	nom. mín.	-	-	-	-	-	-	640 640	640 660	720 720	900 940	1080 1100
Esfuerzo bajo carga de prueba	Sp/R _{ef} o Sp/Rp 0,2	0,94	0,94	0,91	0,93	0,90	0,92	0,91	0,91	0,90	0,88	0,88
Sp	N/mm²	180	225	310	280	380	440	580	600	650	830	970
Alargamiento después de la ruptura A5%	mín.	25	22	14	20	10	8	12	12	10	9	8
Resistencia a la tracción bajo carga de cuña	mín.	Los valores para tornillos y bulones enteros (no los espárragos) deben ser iguales a los valores mínimos de resistencia a la tracción indicados anteriormente.										
Resiliencia		-	-	-	25	-	-	30	30	25	20	15
Solidez de la cabeza						No hay	/ rotura					
Altura mínima de la zona no descarburada, E	a de rosca	-	-	-	-	-	-	1/2H ₁	1/2H ₁	1/2H ₁	2/3H ₁	3/4H ₁
Profundidad máx. de descarburación, G		-	-	-	-	-	-	0,015	0,015	0,015	0,015	0,015

2.1 BULONES, TORNILLOS Y ESPÁRRAGOS

- Para la clase 8.8 con diámetro d ≤ 16 mm. existe un riesgo incrementado de arrancamiento de tuerca, en el caso de exceso de la carga de prueba. Se recomienda referirse a la ISO 898-2.
- 2) Para los bulones de construcción el límite es 12mm.
- 3) Se aplican únicamente para diámetro nominal d≤ 16 mm.
- 4) Las características de tracción mínimas se aplican a los a productos con una longitud nominal L≥ 2,5 d. La dureza mínima se aplica a los productos con una longitud nominal L < 2,5 d, y a otros productos que no pueden ser ensayados a tracción debido a su forma, ejemplo: por la configuración de la cabeza.
- 5) La dureza superficial no puede estar más de 30 puntos Vickers (HV 0,3) por encima de la del núcleo. Ejemplo: para la clase 10.9 la dureza superficial máxima = 390 HV.6)
- 6) En el caso de que el límite inferior de fluencia, R $_{\rm el'}$ no pueda ser determinado, esta permitido medir el límite convencional de elasticidad, R $_{\rm p0,2}$.


Variación de las características a temperaturas elevadas

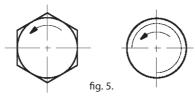
CI I	+20°C	+100°C	+200°C	+250°C	+300°C
Clase de calidad	Límite info	erior deflue de elasti	ncia R _{el} o cidad R _{p0,2}	límite conv N/mm²	encional
5.6	300	270	230	215	195
8,8	640	590	540	510	480
10,9	940	875	790	745	705
12,9	1100	1020	925	875	825

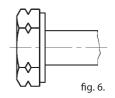
2.1.3 Marcado de los bulones, tornillos y espárragos.

- El marcado de todas las clases de calidad es obligatorio para los bulones y los tornillos de cabeza hexagonal, de diámetro nominal d≥ 5mm. de preferencia en la cara superior de la cabeza, ver fig. 1.

- El marcado de las clases de calidad ≥ 8.8 es obligatoria para los tornillos de cabeza con hexágono interior, tipo "Allen", de diámetro nominal d≥ 5mm. de preferencia en la parte superior de la cabeza, ver fig. 2.

fig. 2.


- Cuando el acero martensítico con bajo contenido en carbono es utilizado en la clase 10.9, el símbolo 10.9 debe de ser subrayado: <u>10.9</u>.
- Los espárragos, con un diámetro nominal d≥ 5mm., deben ser marcados para las clases de calidad ≥ 8.8. Los espárragos con rosca para montaje fijo, deben ser marcados sobre el plano de la extremidad del lado de la tuerca, ver fig. 3. Está autorizado otro método de identificación, con símbolos, tal como de representa en la fig. 4.



Clase de calidad	8.8	9.8	10.9	12.9	
Símbolo de marcado	0	+		Δ	

fig. 4.

 El roscado a izquierdas, para un diámetro nominal d≥ 5mm., debe ser marcado con el símbolo indicado en la figura 5, ya sea en la cabeza del tornillo o en el extremo de la caña. Otra posibilidad de marcado, como la indicada el la figura 6, puede ser utilizada para los bulones y los tornillos de cabeza hexagonal.

- El símbolo de identificación del fabricante es necesario para todos los productos que deben ser marcados con las clases de calidad.
- Para los otros tipos de bulones y tornillos, debe ser efectuado el mismo sistema de marcado. El marcado de elementos especiales puede ser realizado después de acuerdo entre el cliente y el fabricante.

2.2 TUERCAS DIN, PASO GRUESO Y PASO FINO

NORMA

DIN ISO: 267 Parte 4

ISO: -NF: -

Características mecánicas de las tuercas DIN en acero, con cargas de prueba según DIN 267 parte 4 de paso grueso y fino.

Las clases de calidad mencionadas , así como sus características mecánicas, se aplican a las tuercas con rosca métrica ISO de paso grueso y paso fino con tolerancias de roscado 6G, y 4H a 7H, de diámetro nominal hasta 39mm. inclusive; con entrecaras de sobremedida o diámetro exterior mínimo de 1,45 D, y altura mínima de 0,8 D, incluyendo el fresado normal del roscado; ya sean en acero al carbono, o en acero aleado ligeramente, y ensayadas a temperatura ambiente.

Además, estas clases de calidad, se aplican únicamente a las tuercas denominadas "DIN", cuando las características mecánicas se refieren a la DIN 267 Parte 4; ejemplo: tuerca hexagonal DIN 555 y DIN 934.

Es aconsejable, para los nuevos, utilizar las tuercas "ISO"; ejemplo: ISO 4032 o ISO 4034; ya que, éstas ofrecen una resistencia mejor a la carga de prueba de la ISO 898/2, y abandonar, en el futuro, la DIN 267 Parte 4 en favor de la ISO 898/2.

Esta norma no se aplica a las tuercas que tienen especificaciones particulares, tales como: soldabilidad, resistencia a la corrosión conforme a la DIN 276 Parte 11; resistencia a temperaturas por encima de +300°C., o por debajo de -50°C. conforme a la DIN 267 Parte 13; seguridad conforme a la DIN 267 Parte 15.

Las tuercas en acero dulce para decoletaje, no deben ser utilizadas a temperaturas por encima de +250°C.

Existe un riesgo incrementado de arrancamiento de la uniones, realizadas con roscas, con tolerancias por encima de 6g/6H. La utilización de esta norma para tuercas por encima de 39mm. será permitida, solo, si éstas cumplen con todos los requerimientos y características.

2.2.1 Nomenclatura de las clases de calidad.

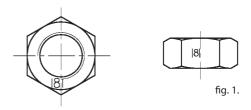
El símbolo consiste en una cifra que indica, en N/mm², un 1/100 del esfuerzo de carga de prueba; ejemplo: la clase 8 tiene un esfuerzo de carga de prueba de: $8 \times 100 = 800 \text{ N/mm}^2$. Este esfuerzo de carga de prueba es igual a la resistencia mínima a la tracción de un tornillo, que puede ser cargado sin arrancamiento, siempre que este unido a la tuerca correspondiente.

Las tuercas de una calidad superior, generalmente, pueden ser utilizadas en el lugar de otras de calidad inferior.

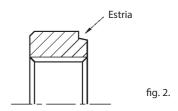
Para establecer una diferenciación clara entre la tuercas "ISO" y la tuercas "DIN", la clase de calidad debe de ser marcada con una barra vertical a cada lado del símbolo; ejemplo: $\left|8\right|$.

2.2.2 Características mecánicas de las tuercas.

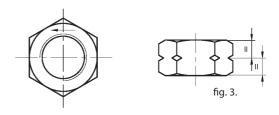
Característ.	mecán	icas	4 *	5	6	8	10	12
Esfuerzo de carga de pueba Sp N/mm²	Sp	N/mm	400	500	600	800	1000	1200
Dureza Vickers	HV 5	máx.	302	302	302	302	353	353
Dureza Brinell	HB 30	máx.	290	290	290	290	335	335
Dureza Rockwell	HRC	máx.	30	30	30	30	36	36


Ensayo de ensanchamiento

* Sólo por encima M 16


ver DIN 267 Parte 21

2.2.3 Marcado de las tuercas.


Las tuercas Hexagonales≥ M5, deben ser marcadas con el símbolo de la clase de calidad; una barra vertical a cada lado del símbolo, y la marca o símbolo de identificación del fabricante encima o al lado; ver fig. 1.

Las tuercas hexagonales DIN 555 y DIN 934, y las tuercas almenadas DIN 935 en acero dulce de decoletaje deben, además, ser marcadas con una estría en una de las caras; ver fig. 2.

Las tuercas con rosca a izquierda deben ser marcadas con una flecha, orientada hacia la izquierda, en una de sus caras, o con una muesca en los cantos de las caras situada a la mitad de la altura de la tuerca; ver fig. 3.

2.3 TUERCAS ISO, PASO GRUESO

NORMA

DIN ISO: 898 Parte 2 ISO: 898 Parte 2 NF: E25 - 400

Características mecánicas de las tuercas "ISO" en acero, con cargas de prueba según ISO 898/2 y rosca métrica ISO de paso grueso.

Las clases de calidad mencionadas , así como sus características mecánicas, se aplican a las tuercas con rosca métrica ISO de paso grueso con tolerancias de roscado 6H,de diámetro nominal hasta 39 mm. inclusive; con entrecaras de sobremedida según ISO 272, y altura≥ 0,5 D; ya sean en acero al carbono, o en acero aleado ligeramente, y ensayadas a temperatura ambiente.

Además, estas clases de calidad, se aplican únicamente a las tuercas denominadas "ISO"; ejemplo: ISO 4032 o ISO 4034. Esta norma no se aplica a las tuercas que tienen especificaciones particulares, tales como: soldabilidad, resistencia a la corrosión conforme a la DIN 267 Parte 11; resistencia a temperaturas por encima de +300°C., o por debajo de -50°C. conforme a la DIN 267 Parte 13; seguridad conforme a la DIN 267 Parte 15.

Las tuercas en acero dulce para decoletaje, no deben ser utilizadas a temperaturas por encima de +250°C. Existe un riesgo incrementado de arrancamiento de la uniones, realizadas con roscas, con tolerancias por encima de 6g/6H. La utilización de esta norma para tuercas por encima de 39 mm. será permitida, solo, si éstas cumplen con todos los requerimientos y características.

2.3.1 Nomenclatura de las clases de calidad.

Para tuercas de altura nominal ≥ 0,8 D, capacidad de carga máxima

Clases de calidad	Bulones y torni	llos a montar
de la tuerca	Clases de calidad	Gama de diámetros
4	3,6 4,6 4,8	> M 16
5	3,6 4,6 4,8 5,6 5,8	≤ M 16 todos
6	6,8	todos
8	8,8	todos
9	8,8 9,8	> M 16 ≤M 39 ≤ M 16
10	10,9	todos
12	12,9	≤ M 39

La designación de las clases de calidad de estas tuercas consiste en una sola cifra, que corresponde a la primera cifra de la clase de calidad del bulón o del tornillo, con la cual, las tuercas pueden ser roscadas. La combinación conforme a lo indicado en la tabla, está destinada a obtener ensamblajes capaces de asegurar el esfuerzo bajo carga de prueba, sin que se produzca el arrancamiento de los hilos de rosca de la tuerca.

Por lo general, una tuerca de clase de calidad más alta puede remplazar a una de clase de calidad más baja.

Para tuercas de altura nominal ≥ 0,8 D, capacidad de carga máxima

Clases de calidad de la tuerca	Esfuerzo bajo carga de prueba nominal N/mm²	Esfuerzo bajo carga de prueba real N/mm²
04	400	380
05	500	500

La designación de las clases de calidad de estas tuercas consiste en dos cifras. La primera cifra indica que la capacidad de carga es reducida en comparación con las tuercas de altura nominal ≥ 0.8 D. La segunda cifra indica un 1/100 del esfuerzo bajo carga de prueba, nominal, en N/mr $^{\Lambda}$; ejemplo: la clase de calidad 04 tiene un esfuerzo bajo carga de prueba, nominal, de 4 x 100 = 400 N/mr $^{\Lambda}$.

2.3.2 Características mecánicas de las tuercas.

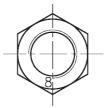
	Clases de calidad												
(Ø		0	4				()5				
	minal	Esf. bajo carga Dureza de prueba Vickers				reza kwell	Esf. bajo carga de prueba	Dui Vick			reza kwell		
m	m.	Sp	H	Hv		RC	Sp	Hv		HRC			
desde	hasta	N/mm ²	mín.	máx.	mín.	máx.	N/mm ²	mín.	máx.	mín.	máx.		
-	4												
4	7												
7	10	380	188	302	-	30	500	272	353	27,8	36		
10	16												
16	39												
39	100	-					-						

	×		2	1					5		
nor	minal	Esf. bajo carga de prueba	Dureza Vickers			reza cwell	Esf. bajo carga de prueba	Dur Vick	eza cers		reza kwell
mı	n.	Sp	H	Hv HRC		RC	Sp	H	lv	Н	RC
desde	hasta	N/mm ²	mín.	máx.	mín.	máx.	N/mm ²	mín.	máx.	mín.	máx.
-	4						520				
4	7	-	-	-	-	-	580	130	302	-	30
7	10						590				
10	16						610				
16	39	510	117	302	_	30	630	146		-	
39	100	-	117	302	_	30	-	128	-		

	ð		6	5			8						
	minal	Esf. bajo carga de prueba	Dureza Vickers						Esf. bajo carga de prueba	Dui Vick	eza kers		reza kwell
mı	m.	Sp	H	lv	Н	RC	Sp	H	lv	Н	RC		
desde	hasta	N/mm ²	mín.	máx.	mín.	máx.	N/mm ²	mín.	máx.	mín.	máx.		
-	4	600					800	170		-			
4	7	670	150	302		30	810						
7	10	680	150	302	-	30	830	188	302	-	30		
10	16	700					840						
16	39	720	170		-		920	233	353	-	20		
39	100	-	142		-		-	207	333	-	38		

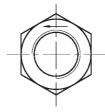
Q	x		٥	9		10											
	minal	Esf. bajo carga de prueba	Dureza Vickers								reza kwell						
mı	m.	Sp	H	Hv HRC		RC	Sp	Н	lv	Н	RC						
desde	hasta	N/mm ²	mín.	máx.	mín.	máx.	N/mm ²	mín.	máx.	mín.	máx.						
-	4	900	170		_		1040										
4	7	915					1040										
7	10	940	188	303	303	302	303	302	202	202		30	1040	272	353	28	38
10	16	950	100	302		30	1050										
16	39	920					1060										
39	100	-	-	-	-	-	-										

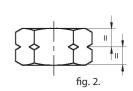
2.3 TUERCAS ISO, PASO GRUESO


	Ø		12												
nomi	nal	Esf. bajo carga de prueba	Du	reza Vick	ers	Dure	eza Rock	well							
m	m.	Sp		Hv											
desde	hasta	N/mm ²	m	ín.	máx.	mi	máx.								
-	4	1150													
4	7	1150													
7	10	1160	295 ¹⁾	272 ²⁾	353	31 ¹⁾	28 ²⁾	38							
10	16	1190													
16	39	1200	-		-										
39	100	-	-	-	-	-	-	-							

Clases de calidad

- 1) para tuercas ISO 4032, tipo 1.
- 2) para tuercas ISO 4033, tipo 2.
- La dureza mínima es obligatoria únicamente para las tuercas tratadas térmicamente, y para las que no se puedan someter al ensayo de carga de prueba. Para todas las demás tuercas la dureza mínima se da a título de dato a tener en cuenta.
- Para las tuercas de diámetros, nominales, por encima de 39 mm. hasta 100 mm., la dureza se da a título informativo.


2.3.3 Marcado de las tuercas.


Las tuercas hexagonales \geq M5, de clases de calidad \geq 8, y las de clase 05, deben ser marcadas con el símbolo de la clase de calidad, y la marca o símbolo de identificación del fabricante encima o al lado; ver fig. 1. El marcado codificado, basado en el sistema de cuadrante horario, no ha encontrado aceptación general.

Las tuercas con rosca a izquierda $\geq M6$ deben ser marcadas con una flecha, orientada hacia la izquierda, en una de sus caras, o con una muesca en los cantos de las caras situada a la mitad de la altura de la tuerca; ver fig. 2.

2.4 TUERCAS ISO, PASO FINO

NORMA

DIN ISO: 898 Parte 6 ISO: 898 Parte 6

NF: -

Características mecánicas de las tuercas "ISO" en acero, con cargas de prueba según ISO 898/2 y rosca métrica ISO de paso fino.

Las clases de calidad mencionadas, así como sus características mecánicas, se aplican a las tuercas con rosca métrica ISO de paso fino con tolerancias de roscado 6H,de diámetro nominal hasta 39 mm. inclusive; con entrecaras de sobremedida según ISO 272, y altura \geq 0,5 D; ya sean en acero al carbono, o en acero aleado ligeramente, y ensayadas a temperatura ambiente.

Además, estas clases de calidad, se aplican únicamente a las tuercas más altas, denominadas "ISO" de DIN 971 Parte 1 y 2 con rosca métrica de paso fino. Esta norma no se aplica a las tuercas que tienen especificaciones particulares, tales como: soldabilidad, resistencia a la corrosión conforme a la DIN 267 Parte 11; resistencia a temperaturas por encima de +300°C., o por debajo de -50°C. conforme a la DIN 267 Parte 13; seguridad conforme a la DIN 267 Parte 15.

Las tuercas en acero dulce para decoletaje, no deben ser utilizadas a temperaturas por encima de +250°C.

Existe un riesgo incrementado de arrancamiento de la uniones, realizadas con roscas, con tolerancias por encima de 6g/6H.

2.4.1 Nomenclatura de las clases de calidad.

Para tuercas de altura nominal ≥ 0,8 D, capacidad de carga máxima

Clases de calidad de	Bulones y		Tuercas		
	a mo		Estilo 1	Estilo 2	
la tuerca	Clases de calidad	Gama de diámetros	Gama de	diámetros	
6	≤ 6,8	d ≥ 39	d ≤ 39	-	
8	8,8	d ≤ 39	d ≤ 39	d ≤ 16	
10	10,9	d ≤ 39	d ≤ 16	d ≤ 39	
12	12,9	d ≤ 16	-	d ≤ 16	

La designación de las clases de calidad de estas tuercas consiste en una sola cifra, que corresponde a la primera cifra de la clase de calidad del bulón o del tornillo, con la cual, las tuercas pueden ser roscadas. La combinación conforme a lo indicado en la tabla, está destinada a obtener ensamblajes capaces de asegurar el esfuerzo bajo carga de prueba, sin que se produzca el arrancamiento de los hilos de rosca de la tuerca.

Por lo general, una tuerca de clase de calidad más alta puede remplazar a una de clase de calidad más baja.

Para tuercas de altura nominal \geq 0,5 D \leq 0,8 D, capacidad de carga máxima

Clases de calidad de la tuerca	Esfuerzo bajo carga de prueba nominal N/mm²	Esfuerzo bajo carga de prueba real N/mm²
04	400	380
05	500	500

La designación de las clases de calidad de estas tuercas consiste en dos cifras. La primera cifra indica que la capacidad de carga es reducida en comparación con las tuercas de altura nominal $\geq 0.8\,$ D. La segunda cifra indica un 1/100 del esfuerzo bajo carga de prueba, nominal, en N/mm², ejemplo: la clase de calidad 04 tiene un esfuerzo bajo carga de prueba, nominal, de 4 x 100 = 400 N/mm².

2.4.2 Características mecánicas de las tuercas.

Clases de calidad										
		(04			05				
Ø nominal d	Esfuerzo bajo carga de prueba	Vicl	reza kers IV	Tue	erca	Esfuerzo bajo carga de prueba	Vicl	reza kers IV	Tue	erca
	Sp	·				Sp				
mm.	N/mm ²	mín.	máx.	estado	estilo	N/mm ²	mín.	máx.	estado	estilo
8 ≤ d ≤ 39	380	188	302	No temp. ni reven.	delg.	500	272	353	Templ. y reven.	delg.

Clases de calidad

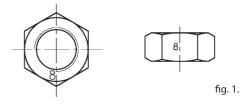
			6			8				
	0							0		
Ø nominal d	Esfuerzo bajo carga de prueba	Vic	reza kers IV	Tue	rca	Esfuerzo bajo carga de prueba	Vicl	reza kers IV	Tue	erca
	Sp	•				Sp				
mm.	N/mm ²	mín.	máx.	estado	estilo	N/mm ²	mín.	máx.	estado	estilo
$8 \le d \le 10$	770	188		no	no	955	250		templ.	
$10 \le d \le 16$	780	100	302	templ.	1	955	230	353	у	1
$16 \leq d \leq 33$	870	233	302	302 y	'	1030	295	333	revenido	1
$33 \le d \le 39$	930	233		revenido ¹⁾		1090	2,55			

	8							
Ø nominal d	Esfuerzo bajo carga de prueba	Dureza Vickers HV		Tuerca				
	Sp							
mm.	N/mm ²	mín.	máx.	estado	estilo			
$8 \le d \le 10$ 10 < d < 16	890 890	195	302	no templ.	2			
$16 \le d \le 33$	-	_	_	у.	_			
$33 \le d \le 39$	-			revenido				

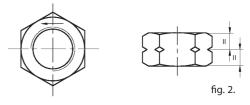
1) Por encima de los 16 mm. el tratamiento térmico de las tuercas es a discreción del fabricante.

Clases de calidad										
	10									
Ø	- (
Ø nominal d	Esfuerzo bajo carga de prueba	Vic	reza kers IV	Tue	rca	Esfuerzo bajo carga de prueba	Vicl	reza kers IV	Tue	erca
	Sp	·				Sp				
mm.	N/mm ²	mín.	máx.	estado	estilo	N/mm ²	mín.	máx.	estado	estilo
$8 \leq d \leq 10$	1100	295	353	templ.	1	1055	250		templ.	
$10 \le d \le 16$	1110			revenido		1055		353	У	2
$16 \le d \le 33$					_	1080	260	333	revenido	_
$33 \le d \le 39$	-	-	-			1080	200			

2.4 TUERCAS ISO, PASO FINO


Clases de calidad

	12					
Ø nominal d	Esfuerzo bajo carga de prueba	Dureza Vickers HV		Tue	erca	
	Sp					
mm.	N/mm ²	mín.	máx.	estado	estilo	
$8 \le d \le 10$				templado		
$10 \le d \le 16$	1200	295	353	у	2	
$16 \leq d \leq 33$				revenido		
$33 \le d \le 39$	-	-	-	-	-	


 La dureza mínima es obligatoria únicamente para las tuercas tratadas térmicamente, y para las que no se puedan someter al ensayo de carga de prueba. Para todas las demás tuercas la dureza mínima se da a título de dato a tener en cuenta.

2.4.3 Marcado de las tuercas.

Las tuercas hexagonales≥ M5, de clases de calidad ≥ 8, y las de clase 05, deben ser marcadas con el símbolo de la clase de calidad, y la marca o símbolo de identificación del fabricante encima o al lado; ver fig. 1. El marcado codificado, basado en el sistema de cuadrante horario, no ha encontrado aceptación general.

Las tuercas con rosca a izquierda ≥ M6 deben ser marcadas con una flecha, orientada hacia la izquierda, en una de sus caras, o con una muesca en los cantos de las caras situada a la mitad de la altura de la tuerca; ver fig. 2.

2.5 TUERCAS, ESPECIFICACIONES DE CALIDAD SEGÚN DUREZA

NORMA

DIN ISO: 267 Parte 24

ISO: -NF: -

Características mecánicas de las tuercas en acero. Especificadas en clases de calidad según la dureza.

Esta norma da las características mecánicas de las tuercas, que por geometría o dimensiones, no pueden ser sometidas al ensayo de esfuerzo bajo carga de prueba, y no pueden ser especificadas bajo esta característica.

Estas tuercas están designadas según la dureza mínima, por lo que no se pueden sacar conclusiones de sus capacidades de carga, ni de arrancamiento de las

Las características funcionales dependen de las formas.

Esta norma no se aplica a las tuercas que tienen especificaciones particulares, tales como: soldabilidad, resistencia a la corrosión conforme a la DIN 267 Parte 11; resistencia a temperaturas por encima de +300°C., o por debajo de -50°C. conforme a la DIN 267 Parte 13; seguridad conforme a la DIN 267 Parte 15; ni a las tuercas que deben ser sometidas al ensayo de esfuerzo bajo carga de prueba conforme a la ISO 898/2, la DIN 267 Parte 4, y la ISO 898/6.

Las tuercas en acero dulce para decoletaje, no deben ser utilizadas a temperaturas por encima de +250°C.

2.5.1 Nomenclatura de las clases de calidad.

Símbolo de clase de calidad	11 H	14 H	17 H	22 H
Dureza Vickers HV 5 min.	110	140	170	220

La designación de las clases de calidad de estas tuercas consiste en una combinación de una cifra y de una letra.

La cifra indica 1/10 de la dureza Vickers mínima; ejemplo $14 \times 10 = 140$ HV. La letra H es la designación para la palabra dureza, Hardness, en inglés.

2.5.2 Características mecánicas de las tuercas.

Características me	cánicas	Clases de calidad					
Caracteristicas file	11 H	14 H	17 H	22 H			
Dureza Vickers HV 5	mín.	110	140	170	220		
	máx.	185	215	245	300		
Dureza Brinell HB 30	mín.	105	133	162	209		
	máx.	176	204	233	285		

2.5.3 Marcado de las tuercas.

Solamente la clase de calidad 22H debe de ser marcada con el símbolo de la clase de calidad; ver fig. 1.

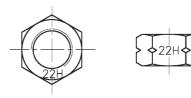
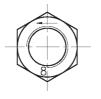
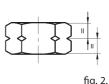
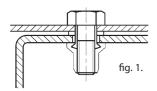
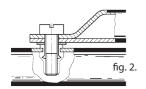




fig. 1.

Las tuercas con rosca a izquierda deben ser marcadas con una flecha, orientada hacia la izquierda, en una de sus caras, o con una muesca en los cantos de las caras situada a la mitad de la altura de la tuerca; ver fig. 2.

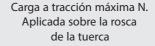

2.6 TUERCAS REMACHABLES

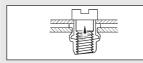
Gracias a la tuerca remachable, es posible proveer a una chapa fina de un punto de fijación, roscado, de una manera simple, fiable y rápida. Con la ayuda de una herramienta de remachar, la tuerca, ciega, se coloca en unos pocos segundos, por el lado exterior de la construcción.


Con la utilización de la tuerca remachable es posible la unión o ensamblaje de diferentes piezas entre ellas: perfiles huecos a chapas, chapas, perfiles estructurales, etc.. Y también proveerlas de agujeros roscados seguros, como puntos de fijación. Combinando la función de tuerca con la de remache de unión.

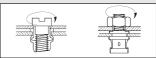
La naturaleza de la aplicación y el entorno en la que deberá trabajar la tuerca tienen, a menudo, un papel determinante en la selección del material de las mismas. Los materiales son, en principio, el acero, el aluminio, el acero inoxidable o el latón

Ejemplos de aplicación.


Fijación de paneles a soportes metálicos.
 Montaje de pies regulables en muebles metálicos.



- Muebles de camping y de jardín plegables. Fijaciones de brazos articulados en parasoles.


2.6.1. Características mecánicas de las tuercas remachables.

Para asegurar un montaje con éxito, es necesario teladrar o punzonar el agujero de alojamiento con gran precisión.

Par de apriete máximo N.m. ¹⁾ Con en elemento entre la cabeza del tornillo y la cabeza de la tuerca

Material d	Acero Inox	Aluminio	Acero Inox	Aluminio
МЗ	4000	2500	1,2	0,7
M4	6800	4000	3,0	2,0
M5	10000	5500	6,0	4,0
M6	15000	8300	10,0	6,0
M8	27000	13000	24,0	15,0
M10	37000	20000	48,0	27,0
M12	54000	28000	82,0	45,0

1) después del control del par, verificar que le parte montada permanece inmóvil.

2.7 RELACIÓN ENTRE LA DUREZA Y LA RESISTENCIA A LA TRACCIÓN DE LOS ACEROS

Las tres propiedades fundamentales de los metales son: la cohesión, la elasticidad y la plasticidad.

La cohesión es la resistencia que oponen los átomos a separarse unos de otros.

La elasticidad es la capacidad de recobrar la forma primitiva que tienen los cuerpos elásticos, cuando cesa la causa que los deforma.

La plasticidad es la capacidad de adquirir deformaciones permanentes. Si esta capacidad para la deformación lo es especialmente para el adelgazamiento en

forma de láminas, la plasticidad se denomina maleabilidad, y si es en forma de hilos, ductilidad.

La dureza se define como la resistencia que ofrece el material a ser rayado o penetrado por otro, lo que nos da un valor de la cohesión del mismo y, por tanto, una idea de su resistencia a la tracción.

Es por ello que sabiendo la dureza de un acero, podemos saber con bastante seguridad su resistencia a la tracción.

2.7.1 Tablas de durezas con correspondencias.

	Dureza								
Brir	nell	Rock	well						
Bola 10 r		C Carga de	B Carga		Ch - ···	Kg.			
Ø de la huella en mm.	Dureza	150 Kg. y cono de dia- mante de 120°	y cono de dia- mante	de 100 Kg. y bola de 1/16"	Vickers	Shore HS	por mm²		
3,40	321	34	108	327	45	109			
3,45	311	33	108	316	44	106			
3,50	302	32	107	305	43	103			
3,55	293	31	106	296	42	100			
3,60	285	30	105	287	40	98			
3,65	277	29	104	279	39	95			
3,70	269	28	104	270	38	92			
3,75	262	26	103	263	37	90			
3,80	255	25	102	256	37	88			
3,85	248	24	102	248	36	86			
3,90	241	23	100	241	35	84			
3,95	235	22	99	235	34	82			
4,00	229	21	98	229	33	80			
4,05	223	20	97	223	32	78			
4,10	217	18	96	217	31	75			
4,15	212	17	96	212	31	73			
4,20	207	16	95	207	30	71			
4,25	202	15	94	202	30	70			
4,30	197	13	93	197	29	68			
4,35	192	12	92	192	28	67			
4,40	187	10	91	187	28	66			
4,45	183	9	90	183	27	64			
4,50	179	8	89	179	27	63			
4,55	174	7	88	174	26	61			
4,60	170	6	87	170	26	60			
4,65	166	4	86	166	25	59			

	Dureza								
Brir	nell	Rock	well						
Bola 10 r 3000		C Carga de	B Carga		Ch a	Kg.			
Ø de la huella en mm.	Dureza	150 Kg. y cono de dia- mante de 120°	de 100 Kg. y bola de 1/16"	Vickers	Shore HS	por mm²			
4,70	163	3	85	163	25	58			
4,75	159	2	84	159	24	56			
1,7 3	133	_	01	135		30			
4,80	156	1	83	156	24	55			
4,85	153	_	82	153	23	54			
4,90	149	_	81	149	23	53			
4,95	146	_	80	146	22	52			
5,00	143	_	79	143	22	51			
5,05	140	_	78	140	21	50			
5,10	137	_	77	137	21	49			
5,15	134	_	76	134	21	48			
5,20	131	_	74	131	20	47			
5,25	128	_	73	128	20	46			
5,30	126	_	72	126	_	45			
5,35	124	_	71	124	_	44			
5,40	121	_	70	121	_	44			
5,45	118	_	69	118	_	43			
5,50	116	_	68	116	_	42			
5,55	114	_	67	114	_	41			
5,60	112	_	66	112	_	40			
5,65	109	_	65	109	_	39			
5,70	107	_	64	107		38			
5,75	105	_	62	105	_	37			
5,80	103	_	61	103	_	37			
5,85	101	_	60	101	_	36			
5,90	99	-	59	99	_	36			
5,95	97	_	57	97	_	35			
6,00	95	_	56	95	_	34			

2.8.1 Tablas de pares de apriete.

Pares de apriete para tornillos tipo DIN-931 y DIN-933 con rosca métrica de paso grueso

Par de apiete M_A en Nm para μ_K = Tamaño Grado 0,08 0,12 0,14 0,16 0,20 0,24 0,10 8.8 2,5 3,3 3,7 4,0 2,2 3,1 10.9 3,7 4,5 4,9 5,4 5,9 M4 3,2 4,1 12.9 3,8 4,3 4,8 5,3 5,7 6,4 6,9 8.8 4,3 4,9 5,5 6,1 6,5 7,3 7,9 10.9 6,3 7,3 8,9 10,7 M5 8,1 9,6 11,6 12.9 9,5 11,2 7.4 8.5 10,4 12.5 13.5 8.8 7,4 8,5 9,5 10,4 11,2 12,5 13,5 M6 10.9 10,9 12,5 14,0 15,5 16,5 18,5 20,0 12.9 12,5 14,5 19,5 16,5 18,0 21,5 23,5 8.8 12,0 14,0 15,5 17,0 18,5 21,0 22,5 M7 10.9 17,5 20,5 23,0 12.9 20,5 24,0 8.8 20,5 10.9 M8 12.9 8.8 M10 10.9 12.9 8.8 M12 10.9 12.9 8.8 M14 10.9 12.9 8.8 M16 10.9 12.9 8.8 M18 10.9 12.9 8.8 M20 10.9 12.9 8.8 M22 10.9 12.9 8.8 M24 10.9 12.9 8.8 M27 10.9 12.9 8.8 M30 10.9 12.9 8.8 M33 10.9 12.9 8.8 M36 10.9 12.9 8.8 M39 10.9 12.9

Pares de apriete para espárragos de caña reducida con rosca métrica de paso grueso

amaño	Grado		Par de	e apiete	M_A en	Nm pa	ra μ _K =	
arriario	Giddo	0,08	0,10	0,12	0,14	0,16	0,20	0,24
	8.8							
M4	10.9							
	12.9							
	8.8	3,0	3,4	3,8	4,1	4,4	4,8	5,2
M5	10.9	4,4	5,0	5,5	6,0	6,4	7,1	7,6
	12.9	5,1	5,8	6,5	7,0	7,5	8,3	8,9
	8.8	5,1	5,8	6,5	7,0	7,5	8,2	8,8
M6	10.9	7,5	8,6	9,5	10,3	11,0	12,1	13,0
	12.9	8,8	10,0	11,1	12,0	13,0	14,0	15,
	8.8	8,5	9,8	10,9	11,9	12,5	14,0	15,
M7	10.9	12,5	14,5	16,0	17,5	18,5	20,5	22,
	12.9	14,5	17,0	18,5	20,5	22,0	24,0	26
	8.8	12,4	14,0	16,0	17,0	18,5	20,5	21,
M8	10.9	18,0	21,0	23,0	25,0	27,0	30,0	32,
	12.9	21,5	24,5	27,1	30,0	32,0	35,0	37,
	8.8	25	29	32	35	37	41	44
M10	10.9	37	42	47	51	55	60	65
	12.9	43	49	55	60	64	71	76
	8.8	43	49	55	60	64	71	76
M12	10.9	63	73	81	88	94	104	112
	12.9	74	85	95	103	110	122	130
	8.8	69	79	88	96	103	114	122
M14	10.9	101	116	130	140	150	165	180
	12.9	118	135	150	165	175	195	210
	8.8	106	123	135	150	160	180	195
M16	10.9	155	180	200	220	235	260	280
	12.9	185	210	235	280	280	310	330
	8.8	150	175	195	210	225	250	270
M18	10.9	215	245	280	300	320	360	380
	12.9	250	290	320	350	380	420	450
	8.8	215	250	280	300	330	360	390
M20	10.9	310	350	400	430	460	520	560
	12.9	360	410	460	510	540	610	650
	8.8	290	340	380	420	450	500	540
M22	10.9	420	480	540	590	640	710	770
	12.9	490	560	630	690	740	830	900
	8.8	370	430	480	520	560	620	670
M24	10.9	530	610	680	740	800	890	960
	12.9	620	710	800	870	940	1040	1120
	8.8	550	640	720	790	850	940	1020
M27	10.9	780	910	1020	1120	1200	1350	145
	12.9	920	1060	1190	1300	1400	1550	170
	8.8	740	860	970	1060	1140	1250	135
M30	10.9	1060	1230	1400	1500	1600	1800	195
	12.9	1240	1450	1600	1750	1900	2100	230
	8.8	1010	1180	1300	1450	1550	1750	190
M33	10.9	1450	1700	1900	2050	2250	2500	270
	12.9	1700	1950	2200	2400	2600	2900	310
	8.8	1300	1500	1700	1850	2000	2250	240
M36	10.9	1850	2150	2400	2600	2800	3200	340
	12.9	2150	2500	2800	3100	3300	3700	400
	8.8	1700	1950	2200	2400	2600	2900	320
M39	10.9	2400	2800	3100	3500	3700	4200	4500
.,,,,	12.9	2800	3300	3700	4000	4400	4900	5300

Pares de apriete para tornillos tipo DIN-931 y DIN-933 con rosca métrica de paso fino

Tamaño	Grado				Α	pa	· IX.	
		0,08	0,10	0,12	0,14	0,16	0,20	0,24
	8.8	19	22	24,5	27	30	33	36
M8x1	10.9	28	32	36	40	43	49	53
	12.9	32	38	43	47	51	57	62
	8.8	27	32	36	40	43	49	53
M9x1	10.9	40	46	53	58	63	71	78
	12.9	46	54	62	68	74	83	91
	8.8	39	45	52	57	62	70	77
M10x1	10.9	57	67	76	84	91	103	113
	12.9	66	78	89	98	107	121	130
	8.8	37	43	49	54	58	66	72
M10x1,25	10.9	55	64	72	79	86	97	105
	12.9	64	74	84	93	100	113	123
	8.8	65	77	87	96	104	118	130
M12x1,25	10.9	96	112	125	140	150	175	190
	12.9	112	130	150	165	180	205	225
	8.8	63	74	83	92	99	112	122
M12x1,5	10.9	93	108	122	135	145	165	180
	12.9	109	125	145	155	170	190	210
M1 4::1 5	8.8	103	121	135	150	165	185	205
M14x1,5	10.9	150	175	200	220	240	270	300
	12.9	175	205	235	260	280	320	350
M16v1 F	8.8	155	180	205	230	250	280	310
M16x1,5	10.9	225	270	300	340	370	420	450
	12.9	270	310	360	390	430	490	530
M10v1 F	8.8	230	270	310	350	380	430	470 670
M18x1,5	10.9	330	390 450	440 520	490 580	540	610 710	670
	12.9	380	450	520	580	630	710	780
M18v2	8.8	220	260	290	330	350	400 570	430
M18x2	10.9	320	370	420	460	500	570	620 720
	12.9 8.8	370 320	430 380	490 430	540 480	590 530	660	720 660
M20x1,5	10.9	460	540	620	690	750	600 850	940
C,1 AU21VI	12.9	530	630	720	800	880	1000	1090
	8.8	430	510	580	640	700	800	880
M22x1,5	10.9	610	720	820	920	1000	1140	1250
11122111	12.9	710	840	960	1070	1170	1350	1450
	8.8	640	700	760	830	890	1020	1140
M24x1,5	10.9	900	990	1090	1180	1270	1450	1630
	12.9	1060	1170	1270	1380	1480	1690	1910
	8.8	540	640	730	810	890	1010	1100
M24x2	10.9	780	920	1040	1160	1250	1450	
_	12.9	910	1070	1220	1350	1500	1700	1850
	8.8	920	1010	1110	1200	1290	1480	1670
M27x1,5	10.9	1310	1440	1580	1710	1840	2110	2380
	12.9	1530	1690	1850	2000	2160	2470	2780
	8.8	790	940	1070	1190	1300	1500	1600
M27x2	10.9	1130	1350	1500	1700	1850	2100	2300
	12.9	1300	1550	1800	2000	2150	2450	2700
	8.8	1280	1410	1540	1670	1800	2060	2320
M30x1,5	10.9	1820	2000	2190	2370	2560	2930	3300
	12.9	2130	2340	2560	2780	2990	3430	3860
	8.8	1240	1370	1490	1610	1740	1990	2240
M30x2	10.9	1770	1940	2120	2300	2480	2830	3190
	12.9	2070	2270	2480	2690	2900	3310	3730
	8.8	1700	1880	2050	2220	2400	2740	3090
M33x1,5	10.9	2430	2670	2920	3170	3410	3910	4400
	12.9	2840	3130	3420	3710	4000	4570	5150
	8.8	1450	1750	2000	2250	2450	2800	3100
M33x2	10.9	2100	2500	2800	3200	3500	4000	4300
	12.9	2450	2900	3300	3700	4100	4600	5100

Par de apiete M_A en Nm para μ_K =

Tamaño	Crado		Par de	e apiete	M _A en	Nm par	a μ _K =	
Tarriario	Grado	0,08	0,10	0,12	0,14	0,16	0,20	,24
	8.8	2230	2450	2680	2910	3140	3590	4050
M36x1,5	10.9	3170	3490	3820	4140	4470	5110	5760
	12.9	3710	4090	4470	4850	5230	5980	6740
	8.8	1850	2200	2500	2800	3000	3400	3700
M36x3	10.9	2600	3100	3500	3900	4300	4900	5300
	12.9	3100	3600	4100	4600	5000	5700	6200
	8.8	2850	3140	3430	3720	4010	4600	5180
M39x1,5	10.9	4050	4470	4890	5300	5720	6550	7380
	12.9	4740	5230	5720	6200	6690	7670	8640
	8.8	2350	2800	3200	3600	3900	4400	4800
M39x3	10.9	3400	4000	4600	5100	5500	6300	6900
	12.9	3900	4700	5300	5900	6500	7400	8100

Pares de apriete para espárragos de caña reducida con rosca métrica de paso fino

Tamaño	Grado		Par de	e apiete	M _A en	Nm pa	ra μ _K =	
Tarriario	Jiddo	0,08	0,10	0,12	0,14	0,16	0,20	0,24
	8.8	13,5	15,5	17,5	19	20,5	23	24,5
M8x1	10.9	20	23	26	28	30	34	36
	12.9	23,5	27	30	33	35	39	42
	8.8	19,5	23	26	28	30	34	37
M9x1	10.9	29	34	38	41	45	50	54
	12.9	34	39	44	49	52	58	63
	8.8	29	33	37	41	44	50	54
M10x1	10.9	42	49	55	61	65	73	79
	12.9	49	57	64	71	76	85	92
	8.8	27	31	35	38	41	45	49
M10x1,25	10.9	39	45	51	56	60	67	72
	12.9	46	53	60	65	70	78	84
	8.8	48	56	63	69	74	83	90
M12x1,25	10.9	71	82	92	101	109	122	130
	12.9	83	96	108	119	130	145	155
	8.8	46	53	59	64	69	77	83
M12x1,5	10.9	67	77	87	95	102	113	122
	12.9	78	91	101	111	119	130	145
	8.8	75	88	99	108	117	130	140
M14x1,5	10.9	111	130	145	160	170	190	205
	12.9	130	150	170	185	200	225	240
	8.8	115	135	150	165	180	200	220
M16x1,5	10.9	170	195	220	245	260	300	320
	12.9	195	230	260	290	310	350	370
	8.8	175	205	230	250	270	310	330
M18x1,5	10.9	245	290	330	360	390	440	470
	12.9	290	340	380	420	460	510	560
	8.8	160	190	210	230	250	280	300
M18x2	10.9	230	270	300	330	360	400	430
	12.9	270	310	350	390	420	460	500
	8.8	240	290	320	360	390	430	470
M20x1,5	10.9	350	410	460	510	550	620	670
	12.9	400	480	540	590	640	720	790
	8.8	320	380	430	480	520	590	640
M22x1,5	10.9	460	540	620	680	740	830	900
	12.9	540	640	720	800	870	980	1060

Pares de apriete para espárragos de caña rebajada con rosca métrica de paso fino (Cont.)

Tamaño	Grado		Par de	e apiete	M _A en	Nm pa	ra μ _K =	
Tarriario	Giado	0,08	0,10	0,12	0,14	0,16	0,20	0,24
	8.8	480	530	580	620	670	750	860
M24x1,5	10.9	680	750	820	890	960	1090	1230
	12.9	800	880	960	1040	1120	1280	1440
	8.8	410	480	540	600	650	730	790
M24x2	10.9	580	680	770	850	920	1030	1120
	12.9	680	800	900	1000	1080	1210	1300
	8.8	700	770	840	910	980	1120	1270
M27x1,5	10.9	990	1100	1200	1300	1400	1600	1800
	12.9	1160	1280	1400	1520	1640	1870	2110
	8.8	600	700	800	880	960	1080	1170
M27x2	10.9	850	1000	1140	1250	1350	1550	1650
	12.9	1000	1170	1350	1450	1600	1800	1950
	8.8	970	1070	1170	1270	1370	1570	1770
M30x1,5	10.9	1380	1520	1670	1810	1950	2230	2510
	12.9	1620	1790	1950	2120	2280	2610	2940
	8.8	930	1030	1120	1210	1310	1490	1680
M30x2	10.9	1330	1460	1590	1730	1860	2130	2390
	12.9	1550	1710	1870	2020	2180	2490	2800

Tamaño	Grado		Par de	e apiete	M _A en	Nm pa	ra μ _K =	
Tarriario	Grado	0,08	0,10	0,12	0,14	0,16	0,20	0,24
	8.8	1300	1440	1570	1700	1830	2100	2360
M33x1,5	10.9	1860	2050	2230	2420	2610	2990	3370
	12.9	2170	2390	2610	2840	3060	3500	3940
	8.8	1120	1300	1500	1650	1800	2050	2200
M33x2	10.9	1600	1900	2150	2400	2600	2900	3200
	12.9	1850	2200	2500	2800	3000	3400	3700
	8.8	1710	1880	2060	2230	2410	2760	3110
M36x1,5	10.9	2430	2680	2930	3180	3430	3920	4420
	12.9	2850	3140	3430	3720	4010	4590	5170
	8.8	1400	1600	1850	2000	2200	2450	2700
M36x3	10.9	1950	2300	2600	2900	3100	3500	3800
	12.9	2300	2700	3100	3400	3600	4100	4400
	8.8	2190	2410	2640	2860	3090	3540	3990
M39x1,5	10.9	3120	3440	3760	4080	4400	5040	5680
	12.9	3650	4020	4400	4770	5150	5900	6650
	8.8	1800	2100	2400	2600	2800	3200	3500
M39x3	10.9	2500	3000	3400	3700	4100	4600	4900
	12.9	3000	3500	4000	4400	4700	5300	5800

2.8.2 Coeficientes de fricción.

a) Coeficientes de fricción en función de las superficies

μ_{G}		Ro	osca					Rosca	externa, to	ornillo			
		ı	Material						Acero				
ca	- B	ċ	Recub	rimiento	(Óxido negro	o fosfatad	0	Zincad	o (Zn6)	Cadmiado	o (Cd6)	Adhesivo
Rosca	Material	Recubrim.	Fa ی	abricación		Conformado	0	Cortado		Confo	rmado o c	ortado	
	Ž	Recu	Fabr.	Lubricac.	Seco	Engrasado	MoS ₂	Engrasado	Seco	Engrasado	Seco	Engrasado	Seco
		Ninguno			0,12 a 0,18	0,10 a 0,16	0,08 a 0,12	0,10 a 0,16	- -	0,10 a 0,18	- -	0,08 a 0,14	0,16 a 0,25
Jerca	Acero	Zincado			0,10 a 0,16	-	-		0,12 a 0,20	0,10 a 0,18	- -	-	0,14 a 0,25
Rosca interna, tuerca		Cadmiado	Cortado	Seco	0,08 a 0,14	-	<u>-</u> -	-	<u>-</u>	-	0,12 a 0,16	0,12 a 0,14	-
Rosc	GG/GTS	Ninguno				0,10 a 0,18	<u>-</u> -	0,10 a 0,18	- -	0,10 a 0,18	- -	0,08 a 0,16	<u>-</u>
	AI / Mg	Ninguno				0,08 a 0,20	-	_ _	- -	_ _	- -	-	_ _ _

μ_{G}	Sup	erficie d	e rozam	iento					Cabeza d	del tornillo				
e c		1	Material						A	cero				
Superficie de rozamiento	- B	Ë	Recub	rimiento		Óx	ido negro	o o fosfatad	lo		Zincad	lo (Zn6)	Cadmia	do (Cd6)
perfi	Material	Recubrim.	Fabr.	abricación		Forjado		Torne	eado	Basto		For	jado	
Su	Σ	Reci	Fak	Lubricac.	Seco	Engrasado	MoS_2	Engrasado	MoS_2	Engrasado	Seco	Engrasado	Seco	Engrasado
		Ninguno	Basto		- -	0,16 a 0,22	- -	0,10 a 0,18	- -	0,16 a 0,22	0,10 a 0,18	-	0,08 a 0,16	-
	Acero	Nin	0		0,12 a 0,18	0,10 a 0,18	0,08 a 0,12	0,10 a 0,18	0,08 a 0,12		0,10	a 0,18	0,08 a 0,16	0,08 a 0,14
yonista	Ac	Zincado	Mecanizado		0,10 a	a 0,16	-	0,10 a 0,16	-	0,10 a 0,18	0,16 a 0,20	0,10 a 0,18	-	-
Superficie antagonista		Cadmio		Seco			0,08 a	a 0,16			- -	<u>-</u> -	0,12 a 0,20	0,12 a 0,14
Supe	GG/GTS		Basto		-	0,10 a 0,18	- -	- -	- -		0,10 a 0,18		0,08 a 0,16	
		Ninguno	Mecanizado		- -	0,14 a 0,20	- -	0,10 a 0,18	- -	0,14 a 0,22	0,10 a 0,18	0,10 a 0,16	0,08 a 0,16	-
	AI / Mg		Mecar		-		0,08	a 0,20		-	-		- -	-

b) Coeficientes de fricción para tuercas y tornillos de acero inoxidable

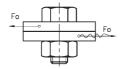
Material de la	Material del	Material de la	Lubri	cante	Elasticidad	Coeficiente	de fricción
superficie antagonista	tornillo	tuerca	Sobre la rosca	Dentro la rosca	de la unión	Sobre la rosca μ_{G}	Dentro la rosca μ_{K}
			Ninguno	Ninguno		0,26 a 0,50	0,35 a 0,50
				te especial oroparafina)	Muy alta	0,12 a 0,23	0,08 a 0,12
		A2	Grasa para prot	eger la corrosión		0,26 a 0,45	0,25 a 0,35
A2	A2		Ninguno	Ninguno		0,23 a 0,35	0,12 a 0,16
				te especial oroparafina)	Baja	0,10 a 0,16	0,08 a 0,12
			Ninguno			0,32 a 0,43	0,08 a 0,11
		AlMgSi		te especial oroparafina)	Muy alta	0,28 a 0,35	0,08 a 0,11

2.9 DIMENSIONADO DE UNIONES ATORNILLADAS

2.9.1 Estimación de los diámetros de los tornillos.

1 2 3 4 Diámetro nominal en mm. Carga en N Clase de calidad 12,9 10,9 8,8 250 400 630 1000	
Carga en N Clase de calidad 12,9 10,9 8,8 250 400 630	
12,9 10,9 8,8 250 400 630	
250 400 630	
250 400 630	
400 630	
630	
1000	
1600 3 3 3	
2500 3 3 4	
4000 4 4 5	
6300 4 5 5	
10000 5 6 8	
16000 6 8 8	
25000 8 10 10	
40000 10 12 14	
63000 12 14 16	
100000 16 16 20	
160000 20 20 24	
250000 24 27 30	
400000 30 36	
630000 36	

Ejemplo:


Una unión está cargada dinámica y excéntricamente por la carga axial $F_A = 8500N$.

Un tornillo de calidad 12.9 debe de montarse empleando una llave dinamométrica.

- A. 10.000N es la carga próxima más grande respecto a F_A . En la columna 1.
- B. Subir dos niveles ya que la carga es axial excéntrica y dinámica; tenemos $F_{\text{Mmmm}} = 25000\text{N}$.
- C. Subir un nivel, por el empleo de una llave dinamométrica; $F_{\text{Mmáx}}$ = 40.000N.
- D. Para $F_{\rm Mmáx.}$ = 40.000N. encontramos en la columna dos, clase de calidad 12.9 el tornillo M10.

Pasos:

- A. Seleccionar la carga mas baja de la columna 1 que este por encima de la carga de trabajo F_{AQ} , que actúa sobre las uniones atornilladas.
- B. La carga mínima de presión (unión), necesaria $F_{Mmin.}$ es determinada subiendo niveles en la columna 1 según sea la aplicación:
 - 4 niveles o más para las cargas o dinámicas transversales, o,

2 niveles para las cargas axiales aplicadas dinámica o excéntricamente, o,

1 nivel para cargas de trabajo aplicadas dinámica y concentricamente, o aplicadas estática y excéntricamente, o,

O niveles para cargas axiales aplicadas estática y concentricamente.

- C. La carga máxima de presión (unión), F_{Mmáx.} inicialmente necesaria, se determina incrementando:
 - 2 niveles en el caso de apretar el tornillo con una herramienta normal, o,
 - 1 nivel en el caso de apretar con una llave dinamométrica, o una herramienta que controle la medición del par dinámico o la medición de la elongación del tornillo, o,
 - 0 niveles en el caso de apriete mediante el control de ángulo en la zona plástica o controlando el limite elástico mediante un ordenador.
- D. Para un nivel determinado las columnas 2 a 4 dan las dimensiones del necesarias del tornillo en mm. en función de la clase de calidad del tornillo seleccionado.

2.9.2 Longitud de roscado útil para agujeros ciegos.

Clase de calidad del tornillo	8.8	8.8	10.9	10.9
Finura de la rosca d/P	<9	≥9	<9	≥9
AlCuMg 1 F40	1,1 d	1	,4 d	_
GG-22	1,0 d	1	,2 d	1,4 d
St37	1,0 d	1	,25 d	1,4 d
St50	0,9 d	1	,0 d	1,2 d
C45V	0,8 d	0	,9 d	1,0 d

2.9 DIMENSIONADO DE UNIONES ATORNILLADAS

2.9.3 Presión superficial máxima.

Material	Resistencia a la tracción R _m en N/mm²	Presión de la superfície limite*) p _G en N/mm ²
St37	370	260
St50	500	420
C45	800	700
42 CrMo4	1000	850
30 CrNiMo8	1200	750
X5CrNiMo1810**)	500 a 700	210
X10CrNiMo189**)	500 a 750	220
Inoxidable, precipitación material endurecido	1200 a 1500	1000 a 1250
Titanio,	390 a 540	300
Ti-6Al-4V	1100	1000
GG 15	150	600
GG 25	250	800

Material	tr	encia a la acción n N/mm²	Presión de la superfície limite*) p _G en N/mm ²
GG 35	3	350	900
GG 40	4	100	1100
GGG 35,3		350	480
GD MgAl9		300 (200)	220 (140)
GK MgAl9		200 (300)	140 (220)
GK AlSi6 Cu4		-	200
AlZnMgCu 0,5		450	370
Al 99	1	60	140
GFK compuest (plástico reforz con vidrio)		-	120
CFK compuest (carbono con f epoxi)		-	140

^{*)} Para roscado a máquina los valores de presión de supeficie pueden reducirse hasta un 25%.

de entalla domina. Aquí, un incremento del paso causa una mejora en la resistencia.

2.9.4 Medidas para mejorar la fuerza de apriete en las uniones atornilladas.

Influencia sobre la fuerza de resistencia por:	Efectividad de esta medida para un incremento en la fuerza de resistencia.	Razón
1) Reducción del diámetro de la rosca d.	Posible mejora destacada dentro del rango d < 40 mm.	El incremento en la fuerza de resistencia con la reducción del diámetro de rosca está atribuida a la influencia de la medida del tornillo sobre las propiedades mecánicas, efecto micro-estructural.
2) Aumento de la precarga.	Mejora destacada debido indirecta- mente a la reducción de fuerzas en el tornillo. Ninguna mejora directa debida a una capacidad de carga incrementada.	Con una precarga creciente, las fuerzas de cohesión reiduales de la unión también decrecen. Así, el peligro de apertura de una cara de dicha unión se reduce. Por lo tanto, el tornillo está sujeto a un esfuerzo adicional reducido. Para tornillos de rosca hecha por rodadura, después de un incremento de la temperatura, la fuerza de resistencia disminuye con una aumento de la precarga debido a la reducción de la tensión compresiva reidual. No es posible en tornillos de rosca hecha por rodadura, antes del tratamiento de calor, porque no hay dependencia de la precarga.
3) Material del tornillo y fuerza del material del tornillo.	Mejora insignificante por selección del material del tornillo. Mejora directa insignificante por la resistencia del material del tornillo. Sólo indirecta para precargas mas más altas.	El efecto de entalla dominante suprime una influencia del material, una vez la capacidad de fluidez del material es suficientemente alta como para prevenir daños durante la instalación tirando de la capa de superficie altamente solicitada en el menor diámetro. Igualmente, el efecto beneficioso de una dureza más elevada es contrarrestado por una sensitividad del efecto de entalla más elevada.
4) Lubricación en la rosca.	Posible mejora limitada.	Las resistencia al los repetidos movimientos provocada por el rozamiento entre la rosca del tornillo y los flancos de la tuerca son reducidos considerablemente con un buen lubricante.
5) Roscado por rodadura después del tratamiento de calor (R.T.A.H.T.)	Mejora destacada (hasta un 100%) especialmente para precargas bajas. Para precargas altas este efecto positivo se reduce.	La fuerza compresiva residual, i nducida por la fabricación, tiene un efecto aumentador sobre la resistencia especialmente para precargas bajas. Con un incremento de la fuerza de precarga, la influencia de la fuerza compresiva residual se reduce: dependencia de la precarga de los tornillos RTAHT. Para precargas en el rango de las cargas de elasticidad de los tornillos, el efecto de la fuerza compresiva residual puede desaparecer casi totalmente.
6) Carburización de la superficie o descarburación de la superficie.	Posible mejora limitada.	Una superficie carburizada y frágil, puede derivar en daños tempranos debi- do a la reducida capacidad de fluidez del metal. Una superficie descarburi- zada de todos modos, no tiene ningún efecto sobre la fuerza de resistencia.
7) Incremento en el paso de rosca.	Posible mejoría limitada.	Es verdad que con un paso creciente, el efecto de entalla en la rosca se reduce, debido al mayor radio en la raíz de los hilos de rosca. Por otra parte, el diámetro menor de los hilos de rosca decrece. Por lo tanto, la influencia del efecto de entalla es compensado. Para roscas relativamente buenas (1/P>12) y para una resistencia alta del material (≤ 12,9), el efecto de

^{**)} Para materiales trabajados en frio, el límite de presión de superficie puede ser considerablemente más alto.

2.9 DIMENSIONADO DE UNIONES ATORNILLADAS

Influencia cobre la france d	Efectividad de esta medida	
Influencia sobre la fuerza de resistencia por:	para un incremento en la fuerza de resistencia.	Razón
8) Incremento de la holgura de rosca.	Mejora posible; por ejemplo: selección de tolerancias, e.	Un incremento de la holgura de la rosca conlleva una mejor resiliencia de fle- xión de los hilos de rosca. Por lo tanto la distribución de carga en la tuer- cas se hace más homogénea.
9) Diferencia en el paso entre la rosca de la tuerca y la rosca del tornillo.	Posible mejora considerable.	Un paso reducido en la rosca del tornillo, comparado con el de la rosca de la tuerca, modifica la distribución de la carga sobre los la unión de los hilos. Con un cambio de paso, controlado con cuidado, la carga del primer hilo de rosca en la tuerca puede ser reducida sustancialmente y, por lo tanto, la fuerza de resistencia puede ser incrementada.
10) Incremento del radio R en la raíz de la rosca.	No hay mejora significativa posible.	Una mejora en la fuerza de resistencia se podría esperar reduciendo la con- centración de tensiones, en la raíz de los hilos de rosca, utilizando un mayor radio, y por lo tanto, aumentando el diámetro interior. De todos modos, esta mejora es contrarrestada por el efecto simultáneo de una distribución menos homogénea de los esfuerzos en zona de unión entre roscas.
11) Reducción del módulo de elasti- cidad del material de la tuerca.	Posible mejora destacada.	Con una disminución en los módulos de elasticidad del material de la tuerca, se incrementa la resiliencia de flexión de los hilos de rosca de la tuerca. Por lo tanto, la distribución de cargas se hace más homogénea, apareciendo una reducción de la carga en el primer hilo de rosca de la tuerca, el más solicitado.
12) Tratamiento de Nitruración.	Mejora posible sólo para precargas bajas.	La mejora de la resistencia causada por un incremento en la fuerza/resis- tencia de la capa superficial y especialmente por la fuerza compresiva resi- dual no tiene ningún efecto en el caso de precargas altas, porque allí, las capas de superficie relativamente frágiles empezarían a fracturarse.
13) Galvanizado o zincado en caliente.	No hay mejora posible, si embargo podría haber una deterioro.	Ningún deterioro debido a capas de galvanizadas de cadmio o zinc, relativamente blandas. La resistencia se puede reducir para capas de níquel o cromo, si se produce una tensión de tracción residual, en la capa, causada por condiciones de deposición. También, capas relativamente frágiles de aleaciones de hierro-zinc, que son producidas durante la galvanización en caliente, reducen la resistencia del orden del 15%.
14) Técnica de fabricación: con o sin arranque de viruta.	Mejora obtenida por el método de fabricación sin cortar.	Una superficie suave, lisa, como es típica en los roscas fabricadas con un proceso sin arranque de viruta, no puede conseguirse, generalmente mediante técnicas de cortado del metal: torneado, fresado,(sin efecto de entalla). Además, es posible que, por ejemplo, se produzcan fuerzas de tracción residual, que son perjudiciales para la resistencia.
15) Incremento del contacto entre las roscas.	Mejora de la resistencia, con incre- mento de la zona de contacto de las roscas.	Con un incremento, creciente, de la superficie de contacto entre las roscas, la distribución de la fuerza total del tornillo sobre los hilos de rosca de la tuerca se ve modificada ventajosamente. Así sí la carga del primer hilo de rosca en la tuerca se ve reducida.
16) Forma de la tuerca.	Posible mejora destacada.	La distribución de la carga puede ser influenciada, de manera efectiva, por la forma de la tuerca. Por ejemplo, la llamada tuerca de tensión de forma cónica.
17) Reducción de la fuerza/resistencia del material del tuerca.	Posible mejora destacada.	Con una disminución de la fuerza del material de la tuerca, aumenta la deformación plástica de los hilos de rosca de la tuerca. Por lo tanto la distribución de la carga en los hilos de rosca se vuelve más repartida y homogénea. Una altura superior a la "crítica" es una condición para la capacidad de carga de la unión.
18) Resiliencia del tornillo y partes de unión.	Posible mejoría destacada para $\delta_{\rm s}$ altas y $\delta_{\rm p}$ bajas.	Una reducción de las fuerzas del tornillo adicionales se consigue mediante una resiliencia del tornillo altamente elástica y una resiliencia de las partes a unir poco elástica.
19) Excentricidad de la componente de carga de trabajo, F _A .	Posible mejoría destacada mediante una reducción de'a'.	Bajo las suposiciones echas en la sección 3.2.2.2.1, la F _{SA} disminuye cuando la 'a' disminuye de acuerdo con la ecuación (3.40). Además, con una 'a' que disminuye, el apertura de uno de los lados de la unión se reduce. En el caso de apertura de un lado, se produce un aumento drástico de fuerza adicional en el tornillo, de acuerdo con las leyes de la palanca.
20) Nivel de introducción de carga del componente de carga de trabajo ${\sf F}_{\sf A}.$	Posible mejora destacada cambiando el nivel de introducción de la carga, hacia la interfase.	Una cambio del nivel de introducción de carga hacia el interfase causa una disminución del factor n. Por lo tanto, la fuerza de adicional del tornillo es reducida.